Is working memory resource depletion effect measurable with a domain-specific or with a domain-general working memory test?

Florian Vié, Aurélie Huret, Julie Brellier, André Tricot, Sébastien Puma, Rémi Capa, Michel Audiffren, Nathalie André, Florence Lespiau, Stéphanie Roussel, Camille Jeunet, Dominique Bellec, Elisabeth Fonteneau, Pom Charras

Universities of Montpellier, Paris, Toulouse, Poitiers, Nîmes & Bordeaux
France
Introduction

• Decreasing cognitive load in working memory can increase learning (Sweller, van Merriënboer, & Paas, 2019)
Introduction

- Decreasing cognitive load in working memory can increase learning (Sweller, van Merriënboer, & Paas, 2019)
- Working memory resources can be depleted during a learning task (Chen, Castro-Alonso, Paas, & Sweller, 2018; Leahy, & Sweller, 2019)
Introduction

• Decreasing cognitive load in working memory can increase learning (Sweller, van Merriënboer, & Paas, 2019)

• Working memory resources can be depleted during a learning task (Chen, Castro-Alonso, Paas, & Sweller, 2018; Leahy, & Sweller, 2019)

• What is getting depleted? Due to what mechanisms? How is this depletion recovered? How long does it take?
Introduction

• Decreasing cognitive load in working memory can increase learning (Sweller, van Merriënboer, & Paas, 2019)
• Working memory resources can be depleted during a learning task (Chen, Castro-Alonso, Paas, & Sweller, 2018; Leahy, & Sweller, 2019)
• What is getting depleted? Due to what mechanisms? How is this depletion recovered? How long does it take?
• Our aim: Investigating the working memory resource depletion effect by considering the Time-Based Resources Sharing model (Barrouillet & Camos, 2015)
The Time-Based Resources Sharing model

- Attention is the main resource in WM
The Time-Based Resources Sharing model

• Attention is the main resource in WM
• It can only be focused on one task at any time, processing a task and maintaining chunks actively requires multitasking
The Time-Based Resources Sharing model

• Attention is the main resource in WM
• It can only be focused on one task at any time, processing a task and maintaining chunks actively requires multitasking
• Multitasking can occur due to a rapid switching between processes
The Time-Based Resources Sharing model

• Attention is the main resource in WM
• It can only be focused on one task at any time, processing a task and maintaining chunks actively requires multitasking
• Multitasking can occur due to a rapid switching between processes
• Time is considered as the main source of forgetting and chunks held active in working memory have to be refreshed periodically to prevent forgetting
The Time-Based Resources Sharing model

• Attention is the main resource in WM
• It can only be focused on one task at any time, processing a task and maintaining chunks actively requires multitasking
• Multitasking can occur due to a rapid switching between processes
• Time is considered as the main source of forgetting and chunks held active in working memory have to be refreshed periodically to prevent forgetting

• We have tested the robustness of this model in school learning situations (Puma et al., 2018)
The Time-Based Resources Sharing model

- Attention is the main resource in WM
- It can only be focused on one task at any time, processing a task and maintaining chunks actively requires multitasking
- Multitasking can occur due to a rapid switching between processes
- Time is considered as the main source of forgetting and chunks held active in working memory have to be refreshed periodically to prevent forgetting

- We have tested the robustness of this model in school learning situations (Puma et al., 2018)
- We have shown its compatibility with cognitive load theory (Puma & Tricot, 2019)
The Time-Based Resources Sharing model

- Attention is the main resource in WM
- It can only be focused on one task at any time, processing a task and maintaining chunks actively requires multitasking
- Multitasking can occur due to a rapid switching between processes
- Time is considered as the main source of forgetting and chunks held active in working memory have to be refreshed periodically to prevent forgetting

- We have tested the robustness of this model in school learning situations (Puma et al., 2018)
- We have shown its compatibility with cognitive load theory (Puma & Tricot, 2019)
- We have shown that the load predicted by the TBRS model was well observed
 - at the physiological level (Mallat et al., 2019)
 - neurophysiological level (Capa et al., 2013)
 - particularly through the modulations of theta EEG activity (Puma et al. 2017)
Aim

• TBRS model assumes that depleted resource is domain-general
• CLT assumes that academic learning is domain-specific

• In a preliminary experiment, we failed to obtain a resource depletion effect with working memory domain general test (n-back task)

• Now we want to compare domain-general one (n-back task) and a domain-specific one (reading span).
Participants and Materials

• 39 participants
 University students in English language and civilization (year 3 and 4; average 22 y.o.)

• English proficiency
 Oxford Online English: assessment of English level and listening comprehension.

• Reading span task

• N-Back task
 Two blocks of 42 trials with size n = 2.

• Transcription task
 12-minute lecture: Robert Waldinger - "What makes a good life?"

• Motivation and comprehension questions
 6 motivational questions with continuous scale response
 16 true/false comprehension questions (7 literal and 9 inferential)
Procedure

• Independent variables
 • Main task (MT): transcription vs. just listening
 • Working memory task (WT): reading span vs. n-back

• Experimental design
 • $WM_2 \times WT_2$

• Dependant Variable
 • WM post-test minus WM pre-test

• One week before
 • Assessment of English proficiency
 • Assessment of typing speed.
 • Training in reading span or n-back.
Procedure

- RSPAN or n-back
- Listening
- Pause
 - Transcription
 - 2.5 listening time
- RSPAN or n-back
- Comprehension and motivation questions

- RSPAN or n-back
- Listening
- Pause
 - 2.5 listening time
- RSPAN or n-back
- Comprehension and motivation questions
Transcription

- 35’ duration divided in 11 segments
- Demand = \(\frac{\text{#letters}}{\text{Time}}\)
- Performances are (very) sensible to demand
Correlations

Demand
• Untranscribed words, $r = 0.75$
• Misprints, $r=0.73$
• Grammatical errors, $r=0.63$

Untranscribed words
• Re-formulations, $r=0.71$

Misprints
• Grammatical errors, $r=0.61$
N-Back - Performances

<table>
<thead>
<tr>
<th>Transcription</th>
<th>Just listening</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pre-test</td>
<td>0.781</td>
</tr>
<tr>
<td>Post-test</td>
<td>0.764</td>
</tr>
</tbody>
</table>

No significant difference
N-Back – Response time

<table>
<thead>
<tr>
<th></th>
<th>Transcription</th>
<th>Just listening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Pre-test</td>
<td>591</td>
<td>230</td>
</tr>
<tr>
<td>Post-test</td>
<td>571</td>
<td>235</td>
</tr>
</tbody>
</table>

No significant difference
Reading Span - Performances

<table>
<thead>
<tr>
<th></th>
<th>Transcription</th>
<th>Just listening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Prr-test</td>
<td>0.763</td>
<td>0.188</td>
</tr>
<tr>
<td>Post-test</td>
<td>0.779</td>
<td>0.166</td>
</tr>
</tbody>
</table>

No significant difference
Reading Span - Performances

![Graph showing reading span performances with bars representing score changes across different sizes and parts (Pre-test vs. Post-test).]
Comprehension

<table>
<thead>
<tr>
<th></th>
<th>Transcription</th>
<th>Just listening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>N-Back</td>
<td>0.606</td>
<td>0.125</td>
</tr>
<tr>
<td>RSPAN</td>
<td>0.699</td>
<td>0.096</td>
</tr>
</tbody>
</table>

- Significant group effect
- \(F(1,36) = 7.270, p = 0.011 \)
Subjective Fatigue

- Significant group effect
- $F(1,36) = 5.357, p = 0.026$

<table>
<thead>
<tr>
<th></th>
<th>Transcription</th>
<th>Just listening</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>N-Back</td>
<td>68.7</td>
<td>20.2</td>
</tr>
<tr>
<td>RSPAN</td>
<td>72.3</td>
<td>27.6</td>
</tr>
</tbody>
</table>
WM test perceived difficulty

<table>
<thead>
<tr>
<th>Transcription</th>
<th>Just listening</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>N-Back</td>
<td>32.4</td>
</tr>
<tr>
<td>RSPAN</td>
<td>61.8</td>
</tr>
</tbody>
</table>

- Group effect
- $F(1,36) = 4.16, p = 0.049$
- Test effect
- $F(1,36) = 6.59, p = 0.015$
Additional experiment

• We tested the effect of optimising the time given to transcribe according to the typing performance of participants.
• Same task, in French
• Participants : 40
 • control group : time given to transcribe not adapted
 • experimental group : time given to transcribe adapted to typing performance
Results

• No effect on average
• Huge effect on variance
Discussion

• We fail to obtain a depletion effect of both domain specific and domain general WM tests

• Demanding condition
 • Lower performance
 • Higher fatigue
 • Higher WM test perceived difficulty

• When a learning task is long and demanding, participants can
 • Decrease their performance, preserving their WM resources
 or
 • Deplete their WM resources