Using the Time Based Resource Sharing model

Taking time into account for studying Cognitive Load Theory:

Using the Time Based Resource Sharing model

International Cognitive Load Theory Conference (ICLTC) 2016. Bochum: Germany
June 23, 2016
The question of learning

Biologically primary knowledge

Biologically secondary knowledge

Sensory Buffer → Short Term / Working Memory → Long Term Memory

Schema

CLT:
- Managing information in WM
- Using WM models

Atkinson & Shiffrin, 1968
Cognitive resources: Working memory

- Spatial
 - *e.g.* Baddeley (1986)
 - Modality effect

- Energetic
 - *e.g.* Ericsson & Kintsch (1995)
 - Expertise Reversal Effect

But: Self paced modality effect (Leahy & Sweller, 2005)
Transient information effect (Sweller, Ayres & Kalyuga, 2011)

Paas, Tuovinen, Tabbers & van Gerven, 2003
Spanjers, van Gog & van Merriënboer, 2010
van Gog, Paas, Marcus, Ayres & Sweller, 2009
Cognitive resources: Working memory

- Taking time into account:
 - Time Based Resources Sharing model
 - Resource = attention
 - Time related decay of activation
 - Memory maintenance = refreshing
 - Multitasking = rapid switching

- Based on ACT-R architecture (e.g., Anderson, 1993)

Camos & Barrouillet (2014) for a review
WM: Time Based Resource Sharing model

- Representation
 - Activation level
 - (amodal representation)

- Time
 - Refreshing each chunk at a given time
 - No interference
 - Processes are attention consuming

Barrouillet, Portrat, Vergauwe, Diependaele & Camos (2011)

- e.g., Barrouillet, Bernardin & Camos (2004)
Switch between refreshing / processing

Cognitive load = time ratio
- Time allowed to refresh memory traces
- Time needed to perform concurrent activities

Complex span tasks
Time Based Resource Sharing model

- Items to memorize
 - Span task

 Letters

 G K W O

 Numbers

 2 9 0 1

- Distraction task
 - Spatial judgment

 Is the square in top or the bottom half of the screen

 Portrat, Camos & Barrouillet (2009)
Rappel
Time Based Resource Sharing model

- Easy condition
- Hard condition
Time Based Resource Sharing model

Working memory span

Portrat, Camos & Barrouillet (2009)

- Close squares
- Distant squares
Time Based Resource Sharing model

- TBRS: Cognitive load as a time ratio
 - Time to process interferent task
 - Time allowed to refresh memory traces

```
<table>
<thead>
<tr>
<th>Item 1</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieve</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Item 1</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieve</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Item 1</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieve</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Item 1</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
<th>Proc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retrieve</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
<td>Proc</td>
</tr>
</tbody>
</table>
```
Experiment 1

- Replication of Portrat, Camos and Barrouillet (2009)
 - 69 students of 5th grade (french system)

- Meaningful items: calculus terms
 - Spatial judgment task

- Calculus ranging from 3 to 8 terms
 - $3 \times 2 \div 6$
 - $8 + 6 + 4 \div 9 \times 7 - 9 - 4 - 1$

- Two groups of 20 children
Experiment 1

- Complex span task

Pre-test Calculus → Train Squares (80%) → Bloc Xp → Pause cartoon → Post-test Calculus

- Squares close / distant
- Squares distant / close
Experiment 1

Nb correct calculus

Distant squares vs. Close squares

- "Experts":
 - p = .004
 - p = .019
 - p < .001

- "Novices":
 - p = .709

Graph showing the comparison between "Experts" and "Novices" in terms of the number of correct calculus problems solved for distant and close squares.
Experiment 1

- Time ratio manipulation had effect on performance

- Effect on novices
 - No effect on experts

- Interference and Working memory capacity?
 - Different judgment tasks

Adams & Hitch, 1997
Experiment 2

Xp 1

Distant squares

Item 1 Proc Proc Proc

Close squares

Item 1 Proc Proc Proc

Different squares, different time needed, same time available

Xp 2

Slow squares

Item 1 Proc Proc Proc

Fast squares

Item 1 Proc Proc Proc

Exact same squares, same time needed, different time available
Experiment 2

- 59 students of 4th (same school)
 - 54 reached 80%

- Same protocol
- Same calculus

- Different distracters
 - Close squares in both conditions
 - Fast : 1 sec
 - Slow : 2 sec

- 2 Groups of 20
Experiment 2

- Slow squares
- Fast squares

- "Experts":
 - p = 0.032
 - p = 0.310

- "Novices":
 - p = 0.154
 - p = 0.012
Experiment 2

- No interference
 - Time related decay

- Extraneous load and expertise
Effect of the time ratio on WM performance

No effect of the number of interfering tasks
Experiment 3

- 61 students (5th and 4th French grades)
 - 38 reached 80% performance criterion

- Same protocol
- Same calculus

- Spatial judgment task:
 - Close squares: 1s
 - 2 modalities: 4 squares & 8 squares

- 10 “novices” / 28 “experts”
Experiment 3

- "Experts":
 - p = 0.016
 - p = 0.073

- "Novices":
 - p = 0.154
 - P = 0.007
Experiment 3

- Extraneous load as a time ratio
- Expertise effect
- Number of elements and time ratio
Thank you for your attention

Sébastien Puma
Nadine Matton
Pierre Vincent Paubel
André Tricot
Université Toulouse 2
&
C.N.R.S. (U.M.R. 5263)
&
E.S.P.E.

Taking time into account for studying Cognitive Load Theory:
Using the Time Based Resource Sharing model

International Cognitive Load Theory Conference (ICLTC) 2016. Bochum: Germany
June 23, 2016