The Cognitive Load Theory: a framework to study effects of hypertexts and prior knowledge on learning

Franck Amadieu, André Tricot & Claudette Mariné LTC – Université Toulouse le Mirail

What is a hypertext?

 Different types of hypertext devices: Macro literacy Systems, problem exploration tools, browsing systems...

- Shared characteristics:
 - Information semantically interconnected (nodes and links)
 - A non-linear organization: the reader can choose his own path
 - Information is structured (e.g. network, hierarchical)
 - User navigates through the information space

Hypertext according to Conklin (1987)

Hypertexts: effects on learning

- No consensus about a positive effect on learning (Amadieu & Tricot, 2006; Chen & Rada, 1996; Dillon & Gabard, 1998; Shapiro & Niederhauser, 2004)
- Low generalizability of all findings → several reasons:
 - Differences between studies (participants, devices, learning tasks, knowledge domain...)
 - Methodological weakness and diversity
 - Technological-centered approach = no psychological theory specific to the learning with hypertext

Hypertext processing = a high cognitive cost?

- Hypertexts impose control of navigation
- Disorientation = a cognitive overload → reduces performance (Ahuja et Webster, 2001)
- No reliable empirical evidences:
 - Few empirical evidences corroborating disorientation (no measures or missing accurate measures like navigational behaviors)
 - Few empirical evidences corroborating relationships between disorientation and learning performance
- To suppress disorientation → Guidance = overviews (e.g. conceptual map)

Hypertexts (highly non-linear) require high cognitive resources

- <u>Metacognitive resources</u> supporting learning strategies, monitoring and planning (Azevedo *et al.*, 2004; Azevedo & Cromley, 2004; Kauffman, 2004, Veenman *et al.*, 2002).
- <u>Spatial abilities</u> supporting navigation (Downing et al., 2005; Lin, 2003; Nilsson et Mayer, 2002, Stanney et Salvendy, 1995)
- Field Independence supporting non-linear navigation and free exploration (Chen, 2002; Chen & Macredie, 2002, Reed & Oughton, 1997)
- <u>Systems knowledge</u> supporting the use of tools (Kraus *et al.*, 2001), a flexible navigation (Hölscher & Strube, 2000; Reed *et al.*, 2000).

Learner's prior knowledge in learning with hypertext: no consensus

- Prior domain knowledge: a main factor for learning (Dochy, 1999), and for learning with hypertext (Dillon & Gabbard, 1998; Shapiro & Niederhauser, 2004; Shlechter, 1993).
- It is usually argued that <u>high prior knowledge</u> learners:
 - Use flexible, elaborated and deep navigation strategies
 - Do not encounter disorientation and cognitive overload
 - → Benefit from low guidance instruction (type of hypertext structures) or no particular type of hypertext instruction

Learner's prior knowledge in learning with hypertext: no consensus

- Low prior knowledge learners:
 - Navigation strategies are based on shallow cues
 - Do encounter disorientation and cognitive load
 - → Benefit more from « well organised » structures
- Weakness of the links between: navigational behaviors / learning performance / disorientation (and cognitive overload)

The need of a learning model to study prior knowledge in learning with hypertext

- Nowadays: no specific model to study prior knowledge effects within the hypertexts domain
- Most used models (no investigations on cognitive load and disorientation):
 - Cognitive Flexibility Theory
 - Schemas Theory
 - Construction-Integration model
- Our position: the cognitive load theory (Sweller, 2003)

Cognitive load theory: a theoretical framwork to study hypertexts

- The central concept: <u>Working Memory</u> with limited capacities
- A <u>subjective measure</u> to assess the cognitive load imposed by the learning task (Paas & van Merriënboer, 1993).
- The theory explains the <u>guidance effects</u> on learning and cognitive load.
- The theory highlights interaction effects between the level of prior knowledge and the guidance provided by the instruction: <u>expertise</u> <u>reversal effect</u> (Kalyuga et al., 2003).

The cognitive load theory

- Design instructions
- Instructional effects: split attention effect, worked example effect ,...
- 3 forms of cognitive load: (Sweller, van Merrienboer et Paas, 1998)
 - Intrinsic cognitive load: difficulty of concepts (interactivity between elements)
 - Extraneous cognitive load: due to the design of the instructional materials – do not contribute to learning
 - Germane cognitive load: processes useful for learning
 - selective attention processes on conceptual information
 - organization processes of information in a coherent representation
 - integration of information in knowledge base

Learning with hypertext: a processing balance

- To reach an effective learning:
 - Reducing the intrinsic cognitive load
 - Reducing the extraneous cognitive load
 - Imposing a high germane cognitive load: freeing WM capacity and favoring the engagement of the learner

The cognitive overload in hypertexts: disorientation

- Many authors argue the main problem is disorientation and cognitive overload but few investigation were carried out.
- Recently, authors suggest using the Cogntive Load Theory to study the learning with hypertext (Amadieu & Tricot, 2006; DeStefano & LeFevre, 2005).
- Conversely to the DeStefano & Lefevre's approach, we suggest studying the effects of extraneous as germane cognitive load on learning.

For novices: hypertext without any guidance

Intrinsic Cognitive Load	Extraneous Cognitive Load (secondary tasks interfering learning)
-Depends on the <u>content</u> : level of elements interactivity	- <u>Using tasks</u> : navigation activity (Disorientation) and using of tools (functions hypertext)
- Depends on the temporary mental model	- <u>Establishing conceptual</u> <u>coherence</u> between information chunks

For experts: hypertext without any guidance

For experts: hypertext with guidance

Similar cognitive activities belong to different forms of cognitive load

- Establishing coherence: inferential activities
 - Low prior knowledge learners: extraneous CL (Conceptual Disorientation)
 - High prior knowledge learners: germane CL (deep processing = elaborative inferences)
- Processing of overview (guidance):
 - Low prior knowledge learners: germane and intrinsic
 CL
 - High prior knowledge learners: extraneous CL (redundant information or information interfering with the expert's domain structures)

Conclusion

- Multiplying and designing different cognitive load measures (e.g. different subjective scales for disorientation)
- Designing measurements of the 3 forms of CL
- Identifying processes linked to the different forms of CL

09/15/2006

3 dimensions interrelated

Cognitive load

- Disorientation
- Forms of CL

Navigation

- <u>Performance</u>
- Searching task
- Comprehension
- Learning

- Strategies
- Coherence
- Using tasks (functions)

- ...

Thank you for your attention